The AMPK and AKT/GSK3β pathways are involved in recombinant proteins fibroblast growth factor 1 (rFGF1 and rFGF1a) improving glycolipid metabolism in rainbow trout (Oncorhynchus mykiss) fed a high carbohydrate diet

Fibroblast growth factor 1 (FGF1) regulates vertebrate cell growth, proliferation and differentiation, and energy metabolism. In this study, we cloned rainbow trout (Oncorhynchus mykiss) fgf1 and fgf1a, prepared their recombinant proteins (rFGF1 and rFGF1a), and described the molecular mechanisms by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animal Nutrition 2024-06, Vol.17, p.11-24
Hauptverfasser: Yu, Huixia, Geng, Shuo, Li, Shuai, Wang, Yingwei, Ren, Xin, Zhong, Debin, Mo, Haolin, Yao, Mingxing, Yu, Jiajia, Li, Yang, Wang, Lixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fibroblast growth factor 1 (FGF1) regulates vertebrate cell growth, proliferation and differentiation, and energy metabolism. In this study, we cloned rainbow trout (Oncorhynchus mykiss) fgf1 and fgf1a, prepared their recombinant proteins (rFGF1 and rFGF1a), and described the molecular mechanisms by which they improve glycolipid metabolism in carnivorous fish. A 31-d feeding trial was conducted to investigate whether they could enhance glycolipid metabolism in rainbow trout on high-carbohydrate diets (HCD). A total of 720 rainbow trout (8.9 ± 0.5 g) were equally divided into 4 groups: the chow diet (CD) group injected with PBS, the HCD group injected with PBS, the HCD group injected with rFGF1 (400 ng/g body weight), and the HCD group injected with rFGF1a (400 ng/g body weight). The results showed that short-term HCD had a significant positive effect on the specific growth rate (SGR) of rainbow trout (P 
ISSN:2405-6545
2405-6383
DOI:10.1016/j.aninu.2023.10.009