Replica Bethe Ansatz solution to the Kardar-Parisi-Zhang equation on the half-line
We consider the Kardar-Parisi-Zhang (KPZ) equation for the stochastic growth of an interface of height h(x,t) h ( x , t ) on the positive half line with boundary condition \partial_x h(x,t)|_{x=0}=A ∂ x h ( x , t ) | x = 0 = A . It is equivalent to a continuum directed polymer (DP) in a random poten...
Gespeichert in:
Veröffentlicht in: | SciPost physics 2020-03, Vol.8 (3), p.035, Article 035 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the Kardar-Parisi-Zhang (KPZ) equation for the stochastic
growth of an interface of height
h(x,t)
h
(
x
,
t
)
on the positive half line with boundary condition
\partial_x h(x,t)|_{x=0}=A
∂
x
h
(
x
,
t
)
|
x
=
0
=
A
.
It is equivalent to a continuum directed polymer (DP) in a random
potential in half-space with a wall at
x=0
x
=
0
either repulsive
A>0
A
>
0
,
or attractive
A - \frac{1}{2}
A
>
−
1
2
the large time PDF is the GSE Tracy-Widom distribution. For
A= \frac{1}{2}
A
=
1
2
,
the critical point at which the DP binds to the wall, we obtain the GOE
Tracy-Widom distribution. In the critical region,
A+\frac{1}{2} = \epsilon t^{-1/3} \to 0
A
+
1
2
=
ϵ
t
−
1
/
3
→
0
with fixed
\epsilon = \mathcal{O}(1)
ϵ
=
(
1
)
,
we obtain a transition kernel continuously depending on
\epsilon
ϵ
.
Our work extends the results obtained previously for
A=+\infty
A
=
+
∞
,
A=0
A
=
0
and
A=- \frac{1}{2}
A
=
−
1
2
. |
---|---|
ISSN: | 2542-4653 2542-4653 |
DOI: | 10.21468/SciPostPhys.8.3.035 |