A Novel Low-Complexity Cascaded Model Predictive Control Method for PMSM

A novel low-complexity cascaded model predictive control method for permanent magnet synchronous motors is proposed to achieve a fast dynamic response to ensure the system’s steady-state performance. Firstly, a predictive speed controller based on an extended state observer is designed in the outer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Actuators 2023-09, Vol.12 (9), p.349
Hauptverfasser: Meng, Qingcheng, Bao, Guangqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel low-complexity cascaded model predictive control method for permanent magnet synchronous motors is proposed to achieve a fast dynamic response to ensure the system’s steady-state performance. Firstly, a predictive speed controller based on an extended state observer is designed in the outer speed loop to improve the anti-interference ability of the system; then, a low-complexity three-vector predictive control algorithm is adopted in the current inner loop, taking into account the steady-state performance of the system and lower computational burden. Finally, a comparative analysis is conducted between the proposed method and traditional methods through simulation and experiments, proving that the proposed method performs well in dynamic and static performance. On this basis, the computational complexity of the current inner loop three-vector prediction algorithm is effectively reduced, indicating the correctness and effectiveness of the proposed method.
ISSN:2076-0825
2076-0825
DOI:10.3390/act12090349