The Evaluation of Historic Building Energy Retrofit Projects through the Life Cycle Assessment

The built environment sector is one of the main sources of greenhouse gas emissions and resource depletion that contributes to the climate change crisis. The European Commission, in the “Green New Deal”, highlights that the sustainable regeneration/requalification of existing buildings plays a funda...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-08, Vol.11 (15), p.7145
Hauptverfasser: Angrisano, Mariarosaria, Fabbrocino, Francesco, Iodice, Paola, Girard, Luigi Fusco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The built environment sector is one of the main sources of greenhouse gas emissions and resource depletion that contributes to the climate change crisis. The European Commission, in the “Green New Deal”, highlights that the sustainable regeneration/requalification of existing buildings plays a fundamental role to maximize the objective of decarbonization and resource conservation for 2050. The aim of this study was to understand how historic buildings’ energy retrofit projects can contribute to achieve this goal. In this study, we made a life cycle assessment to evaluate an energy retrofit project of Villa Vannucchi, an historic building located in San Giorgio a Cremano (Naples). The results of this application showed that the use of hemp material, for walls’ thermal insulation, significantly reduces the percentage of environmental impacts in the entire material life cycle (compared with traditional materials). This was because the plant removes a significant percentage of CO2 already from the atmosphere when it is growing. In conclusion, the assessment of different design scenarios that promote the use of innovative technologies and materials can be of high utility to designers to compare and choose efficient solutions for the sustainable/circular renovation of historic buildings.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11157145