Intelligent damage recognition of composite materials based on deep learning and ultrasonic testing
Ultrasonic non-destructive testing can effectively detect damage in aircraft composite materials, but traditional manual testing is time-consuming and labor-intensive. To realize the intelligent recognition of aircraft composite material damage, this paper proposes a 1D-YOLO network, in which intell...
Gespeichert in:
Veröffentlicht in: | AIP advances 2021-12, Vol.11 (12), p.125227-125227-13 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ultrasonic non-destructive testing can effectively detect damage in aircraft composite materials, but traditional manual testing is time-consuming and labor-intensive. To realize the intelligent recognition of aircraft composite material damage, this paper proposes a 1D-YOLO network, in which intelligent fusion recognizes both the ultrasonic C-scan image and ultrasonic A-scan signal of composite material damage. Through training and testing the composite material damage data on aircraft skin, the accuracy of the model is 94.5%, the mean average precision is 80.0%, and the kappa value is 97.5%. The use of dilated convolution and a recursive feature pyramid effectively improves the feature extraction ability of the model. The effectively used Cascade R-CNN (Cascade Region-Convolutional Neural Network) improves the recognition effect of the model, and the effectively used one-dimensional convolutional neural network excludes non-damaged objects. Comparing our network with YOLOv3, YOLOv4, cascade R-CNN, and other networks, the results show that our network can identify the damage of composite materials more accurately. |
---|---|
ISSN: | 2158-3226 2158-3226 |
DOI: | 10.1063/5.0063615 |