Diverse cloud and aerosol impacts on solar photovoltaic potential in southern China and northern India

Cloud and aerosol are two important modulators that influence the solar radiation reaching the earth’s surface. It is intriguing to find diverse impacts of clouds and aerosols over Southern China (SC) and Northern India (NI) which result in remarkable differences in the plane-of-array irradiance (PO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-11, Vol.12 (1), p.19671-19671, Article 19671
Hauptverfasser: Yang, Jiangyan, Yi, Bingqi, Wang, Shuai, Liu, Yushan, Li, Yuxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cloud and aerosol are two important modulators that influence the solar radiation reaching the earth’s surface. It is intriguing to find diverse impacts of clouds and aerosols over Southern China (SC) and Northern India (NI) which result in remarkable differences in the plane-of-array irradiance (POAI) that signifies the maximum available solar photovoltaic potential by combining the latest satellite retrieval results and modeling tools. By separating the impacts of cloud and aerosol on the POAI, it is found that clouds are responsible for the most reduction of POAI in the SC, while aerosols and clouds are equally important for the NI region. The frequent occurrences of low and middle level clouds with high optical depth in the SC, as compared with the much lower occurrences of all levels of clouds with lower optical depth in the NI, is regarded as the major reason for the differences in the POAI. The differences in the main compositions of aerosols in the SC (sulfate) and the NI (dust) could be essential to answer the question of why higher aerosol optical depth in the SC whereas leads to weaker reduction in the POAI than that in the NI. The mitigation measures targeting on the controls of different types of aerosols should be considered for different regions.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-24208-3