Optical trapping in vivo: theory, practice, and applications

Since the time of their introduction, optical tweezers (OTs) have grown to be a powerful tool in the hands of biologists. OTs use highly focused laser light to guide, manipulate, or sort target objects, typically in the nanoscale to microscale range. OTs have been particularly useful in making quant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanophotonics (Berlin, Germany) Germany), 2019-05, Vol.8 (6), p.1023-1040
Hauptverfasser: Favre-Bulle, Itia A., Stilgoe, Alexander B., Scott, Ethan K., Rubinsztein-Dunlop, Halina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since the time of their introduction, optical tweezers (OTs) have grown to be a powerful tool in the hands of biologists. OTs use highly focused laser light to guide, manipulate, or sort target objects, typically in the nanoscale to microscale range. OTs have been particularly useful in making quantitative measurements of forces acting in cellular systems; they can reach inside living cells and be used to study the mechanical properties of the fluids and structures that they contain. As all the measurements are conducted without physically contacting the system under study, they also avoid complications related to contamination and tissue damage. From the manipulation of fluorescent nanodiamonds to chromosomes, cells, and free-swimming bacteria, OTs have now been extended to challenging biological systems such as the vestibular system in zebrafish. Here, we will give an overview of OTs, the complications that arise in carrying out OTs , and specific OT methods that have been used to address a range of otherwise inaccessible biological questions.
ISSN:2192-8606
2192-8614
DOI:10.1515/nanoph-2019-0055