Autoregressive Lag—Order Selection Using Conditional Saddlepoint Approximations

A new method for determining the lag order of the autoregressive polynomial in regression models with autocorrelated normal disturbances is proposed. It is based on a sequential testing procedure using conditional saddlepoint approximations and permits the desire for parsimony to be explicitly incor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrics 2017-09, Vol.5 (3), p.43
Hauptverfasser: Butler, Ronald, Paolella, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new method for determining the lag order of the autoregressive polynomial in regression models with autocorrelated normal disturbances is proposed. It is based on a sequential testing procedure using conditional saddlepoint approximations and permits the desire for parsimony to be explicitly incorporated, unlike penalty-based model selection methods. Extensive simulation results indicate that the new method is usually competitive with, and often better than, common model selection methods.
ISSN:2225-1146
2225-1146
DOI:10.3390/econometrics5030043