Loss of bone morphogenetic protein-binding endothelial regulator causes insulin resistance

Accumulating evidence suggests that chronic inflammation of metabolic tissues plays a causal role in obesity-induced insulin resistance. Yet, how specific endothelial factors impact metabolic tissues remains undefined. Bone morphogenetic protein (BMP)–binding endothelial regulator (BMPER) adapts end...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-03, Vol.12 (1), p.1927-1927, Article 1927
Hauptverfasser: Mao, Hua, Li, Luge, Fan, Qiying, Angelini, Aude, Saha, Pradip K., Wu, Huaizhu, Ballantyne, Christie M., Hartig, Sean M., Xie, Liang, Pi, Xinchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accumulating evidence suggests that chronic inflammation of metabolic tissues plays a causal role in obesity-induced insulin resistance. Yet, how specific endothelial factors impact metabolic tissues remains undefined. Bone morphogenetic protein (BMP)–binding endothelial regulator (BMPER) adapts endothelial cells to inflammatory stress in diverse organ microenvironments. Here, we demonstrate that BMPER is a driver of insulin sensitivity. Both global and endothelial cell-specific inducible knockout of BMPER cause hyperinsulinemia, glucose intolerance and insulin resistance without increasing inflammation in metabolic tissues in mice. BMPER can directly activate insulin signaling, which requires its internalization and interaction with Niemann-Pick C1 (NPC1), an integral membrane protein that transports intracellular cholesterol. These results suggest that the endocrine function of the vascular endothelium maintains glucose homeostasis. Of potential translational significance, the delivery of BMPER recombinant protein or its overexpression alleviates insulin resistance and hyperglycemia in high-fat diet-fed mice and Lepr db/db ( db/db) diabetic mice. We conclude that BMPER exhibits therapeutic potential for the treatment of diabetes. Type 2 diabetes is associated with chronic inflammation and is characterized by insulin resistance. Here, the authors identify a crucial role for endothelial BMPER function in glucose homeostasis, and BMPER overexpression was shown to alleviate insulin resistance and hyperglycemia in diabetic mice.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-22130-2