Pharmacokinetics and Tissue Distribution of Itampolin A following Intragastric and Intravenous Administration in Rats Using Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry
Itampolin A, a natural brominated tyrosine alkaloid isolated from the sponge , has been shown to have good inhibitory effects in lung cancer cells as a p38α inhibitor. A simple, sensitive, and reliable ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has bee...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2024-06, Vol.29 (11), p.2652 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Itampolin A, a natural brominated tyrosine alkaloid isolated from the sponge
, has been shown to have good inhibitory effects in lung cancer cells as a p38α inhibitor. A simple, sensitive, and reliable ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been established, validated, and applied to the study of the pharmacokinetics and tissue distribution of itampolin A following intragastric and intravenous administration. Itampolin A and theophylline (internal standard, IS) were extracted by the simple protein precipitation technique using methanol as the precipitating solvent. Chromatographic separation was achieved by using the optimized mobile phase of a 0.1% formic acid aqueous solution and acetonitrile in the gradient elution mode. Itampolin A and IS were detected and quantified using positive electrospray ionization in the multiple reaction monitoring mode with transitions of
/
863.9 → 569.1 for itampolin A and
/
181.1 → 124.1 for IS, respectively. The assay exhibited a linear dynamic range of 1-1600 ng/mL for itampolin A in biological samples and the low limit of quantification was 1 ng/mL. Non-compartmental pharmacokinetic parameters indicated that itampolin A was well-absorbed into the systemic circulation and rapidly eliminated after administration. The apparent distribution volume of itampolin A was much higher after intragastric administration than that after intravenous administration. A tissue distribution study showed that itampolin A could be detected in different tissues and maintained a high concentration in the lung, which provided a material basis for its effective application in lung cancer. The pharmacokinetic process and tissue distribution characteristics of imtapolin A were expounded in this study, which can provide beneficial information for the further research and clinical application of itampolin A. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules29112652 |