Nitrogen-Doped Carbon Nanoparticles Derived from Silkworm Excrement as On⁻Off⁻On Fluorescent Sensors to Detect Fe(III) and Biothiols

On⁻off⁻on fluorescent sensors based on emerging carbon nanoparticles (CNPs) or carbon dots (CDs) have attracted extensive attention for their convenience and efficiency. In this study, dumped silkworm excrement was used as a novel precursor to prepare fluorescent nitrogen-doped CNPs (N-CNPs) through...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2018-06, Vol.8 (6), p.443
Hauptverfasser: Lu, Xingchang, Liu, Chen, Wang, Zhimin, Yang, Junyi, Xu, Mengjing, Dong, Jun, Wang, Ping, Gu, Jiangjiang, Cao, Feifei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On⁻off⁻on fluorescent sensors based on emerging carbon nanoparticles (CNPs) or carbon dots (CDs) have attracted extensive attention for their convenience and efficiency. In this study, dumped silkworm excrement was used as a novel precursor to prepare fluorescent nitrogen-doped CNPs (N-CNPs) through hydrothermal treatment. The obtained N-CNPs showed good photoluminescent properties and excellent water dispersibility. Thus, they were applied as fluorescence "on⁻off⁻on" probes for the detection of Fe(III) and biothiols. The "on⁻off" process was achieved by adding Fe(III) into N-CNP solution, which resulted in the selective fluorescence quenching, with the detection limit of 0.20 μM in the linear range of 1⁻500 μM. Following this, the introduction of biothiols could recover the fluorescence efficiently, in order to realize the "off⁻on" process. By using glutathione (GSH) as the representative, the linear range was in the range of 1⁻1000 μM, and the limit of detection was 0.13 μM. Moreover, this useful strategy was successfully applied for the determination of amounts of GSH in fetal calf serum samples.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano8060443