A Linearization Technique for Optimal Design of the Damping Set with Internal Dissipation

‎Considering a damped wave system defined on a two-dimensional domain‎, ‎with a dissipative term localized in an unknown subset with an unknown damping parameter‎, ‎we address the shape design ill-posed problem which consists of optimizing the shape of the unknown subset in order to minimize the ene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of numerical analysis and optimization 2016-02, Vol.6 (1), p.1-31
Hauptverfasser: Alireza Fakharzadeh Jahromi, Hajar Alimorad Dastkhezr, Ali Beiranvand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:‎Considering a damped wave system defined on a two-dimensional domain‎, ‎with a dissipative term localized in an unknown subset with an unknown damping parameter‎, ‎we address the shape design ill-posed problem which consists of optimizing the shape of the unknown subset in order to minimize the energy of the system at a given time‎. ‎By using a new approach based on the embedding process‎, ‎first‎, ‎the system is formulated in variational form; then‎, ‎by transferring the problem into polar coordinates and defining two positive Radon measures‎, ‎we represent the problem in a space of measures‎. ‎In this way‎, ‎the shape design problem is changed into an infinite linear one whose solution is guaranteed‎. ‎In this stage‎, ‎by applying two subsequent approximation steps‎, ‎the optimal solution (optimal control‎, ‎optimal region‎, ‎optimal damping parameter and optimal energy) is identified by a three-phase optimization search technique‎. ‎Numerical simulations are also given in order to compare this new method with another one‎.
ISSN:2423-6977
2423-6969
DOI:10.22067/ijnao.v6i1.44335