A Fully Convolutional Network-Based Tube Contour Detection Method Using Multi-Exposure Images

The tube contours in two-dimensional images are important cues for optical three-dimensional reconstruction. Aiming at the practical problems encountered in the application of tube contour detection under complex background, a fully convolutional network (FCN)-based tube contour detection method is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-06, Vol.21 (12), p.4095
Hauptverfasser: Cheng, Xiaoqi, Sun, Junhua, Zhou, Fuqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tube contours in two-dimensional images are important cues for optical three-dimensional reconstruction. Aiming at the practical problems encountered in the application of tube contour detection under complex background, a fully convolutional network (FCN)-based tube contour detection method is proposed. Multi-exposure (ME) images are captured as the input of FCN in order to get information of tube contours in different dynamic ranges, and the U-Net type architecture is adopted by the FCN to achieve pixel-level dense classification. In addition, we propose a new loss function that can help eliminate the adverse effects caused by the positional deviation and jagged morphology of tube contour labels. Finally, we introduce a new dataset called multi-exposure tube contour dataset (METCD) and a new evaluation metric called dilate inaccuracy at optimal dataset scale (DIA-ODS) to reach an overall evaluation of our proposed method. The experimental results show that the proposed method can effectively improve the integrity and accuracy of tube contour detection in complex scenes.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21124095