A Machine-Learning-Based Framework for Retrieving Water Quality Parameters in Urban Rivers Using UAV Hyperspectral Images

Efficient monitoring of water quality parameters (WQPs) is crucial for environmental health. Drone hyperspectral images have offered the potential for the flexible and accurate retrieval of WQPs. However, a machine learning (ML)-based multi-process strategy for WQP inversion has yet to be establishe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2024-03, Vol.16 (5), p.905
Hauptverfasser: Liu, Bing, Li, Tianhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efficient monitoring of water quality parameters (WQPs) is crucial for environmental health. Drone hyperspectral images have offered the potential for the flexible and accurate retrieval of WQPs. However, a machine learning (ML)-based multi-process strategy for WQP inversion has yet to be established. Taking a typical urban river in Guangzhou city, China, as the study area, this paper proposes a machine learning-based strategy combining spectral preprocessing and ML regression models with ground truth WQP data. Fractional order derivation (FOD) and discrete wavelet transform (DWT) methods were used to explore potential spectral information. Then, multiple methods were applied to select sensitive features. Three modeling strategies were constructed for retrieving four WQPs, including the Secchi depth (SD), turbidity (TUB), total phosphorus (TP), and permanganate index (CODMn). The highest R2s were 0.68, 0.90, 0.70, and 0.96, respectively, with corresponding RMSEs of 13.73 cm, 6.50 NTU, 0.06 mg/L, and 0.20 mg/L. Decision tree regression (DTR) was found to have the potential with the best performance for the first three WQPs, and eXtreme Gradient Boosting Regression (XGBR) for the CODMn. Moreover, tailored feature selection methods emphasize the importance of fitting processing strategies for specific parameters. This study provides an effective framework for WQP inversion that combines spectra mining and extraction based on drone hyperspectral images, supporting water quality monitoring and management in urban rivers.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16050905