Three-loop Euler-Heisenberg Lagrangian in 1+1 QED. Part I. Single fermion-loop part

A bstract We study the three-loop Euler-Heisenberg Lagrangian in spinor quantum electrodynamics in 1+1 dimensions. In this first part we calculate the one-fermion-loop contribution, applying both standard Feynman diagrams and the worldline formalism which leads to two different representations in te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2019-03, Vol.2019 (3), p.1-46, Article 167
Hauptverfasser: Huet, Idrish, de Traubenberg, Michel Rausch, Schubert, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We study the three-loop Euler-Heisenberg Lagrangian in spinor quantum electrodynamics in 1+1 dimensions. In this first part we calculate the one-fermion-loop contribution, applying both standard Feynman diagrams and the worldline formalism which leads to two different representations in terms of fourfold Schwinger-parameter integrals. Unlike the diagram calculation, the worldline approach allows one to combine the planar and the non-planar contributions to the Lagrangian. Our main interest is in the asymptotic behaviour of the weak-field expansion coefficients of this Lagrangian, for which a non-perturbative prediction has been obtained in previous work using worldline instantons and Borel analysis. We develop algorithms for the calculation of the weak-field expansion coefficients that, in principle, allow their calculation to arbitrary order. Here for the non-planar contribution we make essential use of the polynomial invariants of the dihedral group D 4 in Schwinger parameter space to keep the expressions manageable. As expected on general grounds, the coefficients are of the form r 1 + r 2 ζ 3 with rational numbers r 1 , r 2 . We compute the first two coefficients analytically, and four more by numerical integration.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP03(2019)167