Stability and flexibility in chromatin structure and transcription underlies memory CD8 T-cell differentiation [version 1; peer review: 2 approved]

The process by which naïve CD8 T cells become activated, accumulate, and terminally differentiate as well as develop into memory cytotoxic T lymphocytes (CTLs) is central to the development of potent and durable immunity to intracellular infections and tumors. In this review, we discuss recent studi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:F1000 research 2019, Vol.8, p.1278
Hauptverfasser: Diao, Huitian, Pipkin, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The process by which naïve CD8 T cells become activated, accumulate, and terminally differentiate as well as develop into memory cytotoxic T lymphocytes (CTLs) is central to the development of potent and durable immunity to intracellular infections and tumors. In this review, we discuss recent studies that have elucidated ancestries of short-lived and memory CTLs during infection, others that have shed light on gene expression programs manifest in individual responding cells and chromatin remodeling events, remodeling factors, and conventional DNA-binding transcription factors that stabilize the differentiated states after activation of naïve CD8 T cells. Several models have been proposed to conceptualize how naïve cells become memory CD8 T cells. A parsimonious solution is that initial naïve cell activation induces metastable gene expression in nascent CTLs, which act as progenitor cells that stochastically diverge along pathways that are self-reinforcing and result in shorter- versus longer-lived CTL progeny. Deciphering how regulatory factors establish and reinforce these pathways in CD8 T cells could potentially guide their use in immunotherapeutic contexts.
ISSN:2046-1402
2046-1402
DOI:10.12688/f1000research.18211.1