Prediction of cell position using single-cell transcriptomic data: an iterative procedure [version 2; peer review: 2 approved]

Single-cell sequencing reveals cellular heterogeneity but not cell localization. However, by combining single-cell transcriptomic data with a reference atlas of a small set of genes, it would be possible to predict the position of individual cells and reconstruct the spatial expression profile of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:F1000 research 2019-01, Vol.8, p.1775-1775
Hauptverfasser: Alonso, Andrés M., Carrea, Alejandra, Diambra, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-cell sequencing reveals cellular heterogeneity but not cell localization. However, by combining single-cell transcriptomic data with a reference atlas of a small set of genes, it would be possible to predict the position of individual cells and reconstruct the spatial expression profile of thousands of genes reported in the single-cell study. With the purpose of developing new algorithms, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) consortium organized a crowd-sourced competition known as DREAM Single Cell Transcriptomics Challenge (SCTC). Within this context, we describe here our proposed procedures for adequate reference genes selection, and an iterative procedure to predict spatial expression profile of other genes.
ISSN:2046-1402
2046-1402
DOI:10.12688/f1000research.20715.2