Cartesian atomic cluster expansion for machine learning interatomic potentials

Machine learning interatomic potentials are revolutionizing large-scale, accurate atomistic modeling in material science and chemistry. Many potentials use atomic cluster expansion or equivariant message-passing frameworks. Such frameworks typically use spherical harmonics as angular basis functions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj computational materials 2024-07, Vol.10 (1), p.157-10, Article 157
1. Verfasser: Cheng, Bingqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine learning interatomic potentials are revolutionizing large-scale, accurate atomistic modeling in material science and chemistry. Many potentials use atomic cluster expansion or equivariant message-passing frameworks. Such frameworks typically use spherical harmonics as angular basis functions, followed by Clebsch-Gordan contraction to maintain rotational symmetry. We propose a mathematically equivalent and simple alternative that performs all operations in the Cartesian coordinates. This approach provides a complete set of polynormially independent features of atomic environments while maintaining interaction body orders. Additionally, we integrate low-dimensional embeddings of various chemical elements, trainable radial channel coupling, and inter-atomic message passing. The resulting potential, named Cartesian Atomic Cluster Expansion (CACE), exhibits good accuracy, stability, and generalizability. We validate its performance in diverse systems, including bulk water, small molecules, and 25-element high-entropy alloys.
ISSN:2057-3960
2057-3960
DOI:10.1038/s41524-024-01332-4