Temporal Means and Variability of Arctic Sea Ice Melt and Freeze Season Climate Indicators Using a Satellite Climate Data Record
Information on the timing of Arctic snow and ice melt onset, sea ice opening, retreat, advance, and closing, can be beneficial to a variety of stakeholders. Sea ice modelers can use information on the evolution of the ice cover through the rest of the summer to improve their seasonal sea ice forecas...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2018-09, Vol.10 (9), p.1328 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Information on the timing of Arctic snow and ice melt onset, sea ice opening, retreat, advance, and closing, can be beneficial to a variety of stakeholders. Sea ice modelers can use information on the evolution of the ice cover through the rest of the summer to improve their seasonal sea ice forecasts. The length of the open water season (as derived from retreat/advance dates) is important for human activities and for wildlife. Long-term averages and variability of these dates as climate indicators are beneficial to business strategic planning and climate monitoring. In this study, basic characteristics of temporal means and variability of Arctic sea ice climate indicators derived from a satellite-based climate data record from March 1979 to February 2017 melt and freeze seasons are described. Our results show that, over the Arctic region, anomalies of snow and ice melt onset, ice opening and retreat dates are getting earlier in the year at a rate of more than 5 days per decade, while that of ice advance and closing dates are getting later at a rate of more than 5 days per decade. These significant trends resulted in significant upward trends for anomalies of inner and outer ice-free periods at a rate of nearly 12 days per decade. Small but significant downward trends of seasonal ice loss and gain period anomalies were also observed at a rate of −1.48 and −0.53 days per decade, respectively. Our analyses also demonstrated that the means of these indicators and their trends are sensitive to valid data masks and regional averaging methods. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs10091328 |