Uniformly Primal Submodule over Noncommutative Ring

Let R be an associative ring with identity and M be a unitary right R-module. A submodule N of M is called a uniformly primal submodule provided that the subset B of R is uniformly not right prime to N, if there exists an element s∈M−N with sRB⊆N.The set adjN=r∈R|mRr⊆N for some m∈M is uniformly not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Mathematics 2020-10, Vol.2020 (2020), p.1-4
1. Verfasser: Abulebda, Lamis J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be an associative ring with identity and M be a unitary right R-module. A submodule N of M is called a uniformly primal submodule provided that the subset B of R is uniformly not right prime to N, if there exists an element s∈M−N with sRB⊆N.The set adjN=r∈R|mRr⊆N for some m∈M is uniformly not prime to N.This paper is concerned with the properties of uniformly primal submodules. Also, we generalize the prime avoidance theorem for modules over noncommutative rings to the uniformly primal avoidance theorem for modules.
ISSN:2314-4629
2314-4785
DOI:10.1155/2020/1593253