Erosion Gully Networks Extraction Based on InSAR Refined Digital Elevation Model and Relative Elevation Algorithm—A Case Study in Huangfuchuan Basin, Northern Loess Plateau, China

The time-effective mapping of erosion gullies is crucial for monitoring and early detection of developing erosional progression. However, current methods face challenges in obtaining large-scale erosion gully networks rapidly due to limitations in data availability and computational complexity. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2024-03, Vol.16 (5), p.921
Hauptverfasser: Lu, Pingda, Zhang, Bin, Wang, Chenfeng, Liu, Mengyun, Wang, Xiaoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The time-effective mapping of erosion gullies is crucial for monitoring and early detection of developing erosional progression. However, current methods face challenges in obtaining large-scale erosion gully networks rapidly due to limitations in data availability and computational complexity. This study developed a rapid method for extracting erosion gully networks by integrating interferometric synthetic aperture radar (InSAR) and the relative elevation algorithm (REA) within the Huangfuchuan Basin, a case basin in the northern Loess Plateau, China. Validation in the study area demonstrated that the proposed method achieved an F1 score of 81.94%, representing a 9.77% improvement over that of the reference ASTER GDEM. The method successfully detected small reliefs of erosion gullies using the InSAR-refined DEM. The accuracy of extraction varied depending on the characteristics of the gullies in different locations. The F1 score showed a positive correlation with gully depth (R2 = 0.62), while the fragmented gully heads presented a higher potential of being missed due to the resolution effect. The extraction results provided insights into the erosion gully networks in the case study area. A total of approximately 28,000 gullies were identified, exhibiting pinnate and trellis patterns. Most of the gullies had notable intersecting angles exceeding 60°. The basin’s average depth was 64 m, with the deepest gully being 140 m deep. Surface fragmentation indicated moderate erosive activity, with the southeastern loess region showing more severe erosion than the Pisha sandstone-dominated central and northwestern regions. The method described in this study offers a rapid approach to map gullies, streamlining the workflow of erosion gully extraction and enabling efficiently targeted interventions for erosion control efforts. Its practical applicability and potential to leverage open-source data make it accessible for broader application in similar regions facing erosion challenges.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16050921