Effects of prenatal dietary rumen-protected choline supplementation during late gestation on calf growth, metabolism, and vaccine response

The objective of this study was to examine the effects of prenatal supplementation and dose of rumen-protected choline (RPC) on neonatal calf growth, metabolism, and vaccine response. Parous Holstein cows were blocked by calving month and randomly assigned within block to receive 45 g/d of RPC [20.4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dairy science 2022-12, Vol.105 (12), p.9639-9651
Hauptverfasser: Swartz, T.H., Bradford, B.J., Lemke, M., Mamedova, L.K., Agnew, R., Fehn, J., Owczarzak, E., McGill, J.L., Estes, K.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this study was to examine the effects of prenatal supplementation and dose of rumen-protected choline (RPC) on neonatal calf growth, metabolism, and vaccine response. Parous Holstein cows were blocked by calving month and randomly assigned within block to receive 45 g/d of RPC [20.4 g/d of choline ions (CHOL45), n = 19], 30 g/d of RPC [13.6 g/d of choline ions (CHOL30), n = 22], or no RPC (CON, n = 19) as a top-dress, starting 24 d before expected calving. Calf body weights were recorded for the first 3 wk of life. All calves were fed colostrum replacer (300 g of IgG) at birth, and apparent efficiency of IgG absorption was calculated. On d 1, 7, 14, and 21, blood samples were taken to quantify plasma reactive oxygen and nitrogen species, antioxidant potential, haptoglobin, nonesterified fatty acids (NEFA), β-hydroxybutyrate, and glucose. Calves received an intranasal vaccine at birth, and nasal secretions were collected on d 0, 7, 10, 14, and 21 to quantify bovine respiratory syncytial virus-specific IgA. Data were analyzed using linear mixed models including the fixed effects of treatment, time (when applicable), calf sex, and prepartum dam data (−24 d) along with interactions. Treatment did not affect calf body weight, β-hydroxybutyrate, or glucose concentrations. For apparent efficiency of IgG absorption, treatment interacted with the dam's prepartum body condition score. Where the dam's body condition score was ≤3.25, IgG absorption was reduced in calves born from CHOL45 dams as compared with calves from either CHOL30 or CON dams. Calves from CHOL30 dams had a lesser oxidative stress index (OSi; reactive oxygen and nitrogen species/antioxidant potential) than calves from CON dams. Haptoglobin concentrations were less in heifer calves from CHOL45 dams as compared with heifers from CON dams. The dam's prepartum NEFA concentration interacted with treatment. When dam NEFA was minimal, calves from CHOL45 and CHOL30 dams had greater or tended to have greater NEFA, respectively. Conversely, when dam NEFA was greater, calves from CHOL30 and CHOL45 dams had lesser or tended to have lesser NEFA than calves from CON dams, respectively. For vaccine response, treatment interacted with the dam's prepartum OSi. Among calves born from dams with a greater OSi, calves from CHOL45 and CHOL30 dams had lesser bovine respiratory syncytial virus-specific IgA concentrations in nasal secretions as compared with CON. Prenatal RPC supplementation during late ges
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2022-22239