Large scale active-learning-guided exploration for in vitro protein production optimization

Lysate-based cell-free systems have become a major platform to study gene expression but batch-to-batch variation makes protein production difficult to predict. Here we describe an active learning approach to explore a combinatorial space of ~4,000,000 cell-free buffer compositions, maximizing prote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-04, Vol.11 (1), p.1872-1872, Article 1872
Hauptverfasser: Borkowski, Olivier, Koch, Mathilde, Zettor, Agnès, Pandi, Amir, Batista, Angelo Cardoso, Soudier, Paul, Faulon, Jean-Loup
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lysate-based cell-free systems have become a major platform to study gene expression but batch-to-batch variation makes protein production difficult to predict. Here we describe an active learning approach to explore a combinatorial space of ~4,000,000 cell-free buffer compositions, maximizing protein production and identifying critical parameters involved in cell-free productivity. We also provide a one-step-method to achieve high quality predictions for protein production using minimal experimental effort regardless of the lysate quality. Cell-free lysates are a major platform for in vitro protein production but batch-to-batch variation makes production difficult to predict. Here the authors develop an active learning approach to optimising buffer conditions to bring homemade lysates up to commercial production potential.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-15798-5