Interleukin 10-Secreting MSCs via TALEN-Mediated Gene Editing Attenuates Left Ventricular Remodeling after Myocardial Infarction
Stem cells or progenitor cells have been demonstrated as a novel alternative for cell therapy; however, their sustained efficacy is still debated. This study aimed to evaluate whether interleukin 10 (IL-10) gene-edited amniotic mesenchymal stem cells (AMM/I) contribute to left ventricular (LV) funct...
Gespeichert in:
Veröffentlicht in: | Cellular physiology and biochemistry 2019, Vol.52 (4), p.728-741 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stem cells or progenitor cells have been demonstrated as a novel alternative for cell therapy; however, their sustained efficacy is still debated. This study aimed to evaluate whether interleukin 10 (IL-10) gene-edited amniotic mesenchymal stem cells (AMM/I) contribute to left ventricular (LV) function and remodeling after acute myocardial infarction (AMI).
The IL-10 gene was integrated into the genomic locus of AMM via transcription activator-like effector nucleases (TALEN) and AMM/I were intramyocardially transplanted into AMI mice models. Cardiac function, quantitative polymerase chain reaction, histology, capillary density, and apoptosis assays were performed.
AMM/I transplantation significantly suppressed infiltrated CD68 positive or F4/80 positive inflammatory cells and reduced the expression of pro-inflammatory factors in the infarcted myocardium. In addition, significantly improved LV function and reduced infarct size was noted in mice model with AMM/I transplantation than in those given AMM. Moreover, AMM/I highly inhibited cell apoptosis and increased capillary density in the infarcted myocardium.
Our study demonstrated that AMM/I recruitment played favorable roles in the early restoration of LV function and remodeling by suppressing inflammation and enhancing cardiac protection and capillary density. |
---|---|
ISSN: | 1015-8987 1421-9778 |
DOI: | 10.33594/000000051 |