Finite Mixture of the Hidden Markov Model for Driving Style Analysis
Analyzing driving style is useful for developing intelligent vehicles. Previous studies usually consider the statistical features (e.g., the means and standard deviations of brake pressure) of the measured driving data or manually define the number of patterns divided by behavior semantics to charac...
Gespeichert in:
Veröffentlicht in: | Journal of advanced transportation 2022-01, Vol.2022, p.1-8 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Analyzing driving style is useful for developing intelligent vehicles. Previous studies usually consider the statistical features (e.g., the means and standard deviations of brake pressure) of the measured driving data or manually define the number of patterns divided by behavior semantics to characterize driving styles. In this paper, we propose a driving style analysis to describe the personalized driving styles from time-series driving data without specifying the levels in advance but by estimating them from the data. First, range, range rate, and acceleration are selected as three feature variables to describe car-following scenarios. Then, the car-following data are normalized to reduce the scale influence of different variables on the segmentation results. The hidden Markov model (HMM) and the finite mixture of the hidden Markov model (MHMM) are adopted to extract behavior semantics. Compared with the HMM, the MHMM can identify the heterogeneity of data and then provide more reasonable primitive driving patterns. Based on the results, this study uses the K-means clustering to label all the driving patterns semantically and identifies a total of 75 different driving patterns. We use the normalized frequency distributions to describe personalized driving behavior characteristics, and similarity evaluations of driving styles are applied using the Kolmogorov–Smirnov test. The proposed approach in this paper is useful for exploring the characteristics of driving habits. |
---|---|
ISSN: | 0197-6729 2042-3195 |
DOI: | 10.1155/2022/4989947 |