Host-Microbiota Interactions in the Pathogenesis of Antibiotic-Associated Diseases

Improved understanding of the interplay between host and microbes stands to illuminate new avenues for disease diagnosis, treatment, and prevention. Here, we provide a high-resolution view of the dynamics between host and gut microbiota during antibiotic-induced intestinal microbiota depletion, oppo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) 2016-02, Vol.14 (5), p.1049-1061
Hauptverfasser: Lichtman, Joshua S., Ferreyra, Jessica A., Ng, Katharine M., Smits, Samuel A., Sonnenburg, Justin L., Elias, Joshua E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Improved understanding of the interplay between host and microbes stands to illuminate new avenues for disease diagnosis, treatment, and prevention. Here, we provide a high-resolution view of the dynamics between host and gut microbiota during antibiotic-induced intestinal microbiota depletion, opportunistic Salmonella typhimurium and Clostridium difficile pathogenesis, and recovery from these perturbed states in a mouse model. Host-centric proteome and microbial community profiles provide a nuanced longitudinal view, revealing the interdependence between host and microbiota in evolving dysbioses. Time- and condition-specific molecular and microbial signatures are evident and clearly distinguished from pathogen-independent inflammatory fingerprints. Our data reveal that mice recovering from antibiotic treatment or C. difficile infection retain lingering signatures of inflammation, despite compositional normalization of the microbiota, and host responses could be rapidly and durably relieved through fecal transplant. These experiments demonstrate insights that emerge from the combination of these orthogonal, untargeted approaches to the gastrointestinal ecosystem. [Display omitted] •Clindamycin induces lasting effects on both microbiota and host proteome•The host proteome displays clear signatures of Salmonella and Clostridium infections•Pathogen-mediated host responses are distinct from responses to chemical colitis•Fecal transplant induces faster host proteome recovery than microbiota recovery Lichtman et al. compared longitudinal mouse models of antibiotic-associated inflammation. By concurrently measuring gut microbes and secreted host proteins with 16S rRNA sequencing and mass spectrometry, they found dynamic, yet distinct, microbe and proteome profiles. Inflammation-regulated proteases, antimicrobial proteins, and immunoglobulins marked multiple pathways actively shaping host responses to dysbiosis.
ISSN:2211-1247
2211-1247
DOI:10.1016/j.celrep.2016.01.009