High-Accuracy Positioning in Urban Environments Using Single-Frequency Multi-GNSS RTK/MEMS-IMU Integration
The integration of Global Positioning System (GPS) real-time kinematics (RTK) and an inertial navigation system (INS) has been widely used in many applications, such as mobile mapping and autonomous vehicle control. Such applications require high-accuracy position information. However, continuous an...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2018-01, Vol.10 (2), p.205 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The integration of Global Positioning System (GPS) real-time kinematics (RTK) and an inertial navigation system (INS) has been widely used in many applications, such as mobile mapping and autonomous vehicle control. Such applications require high-accuracy position information. However, continuous and reliable high-accuracy positioning is still challenging for GPS/INS integration in urban environments because of the limited satellite visibility, increasing multipath, and frequent signal blockages. Recently, with the rapid deployment of multi-constellation Global Navigation Satellite System (multi-GNSS) and the great advances in low-cost micro-electro-mechanical-system (MEMS) inertial measurement units (IMUs), it is expected that the positioning performance could be improved significantly. In this contribution, the tightly-coupled single-frequency multi-GNSS RTK/MEMS-IMU integration is developed to provide precise and continuous positioning solutions in urban environments. The innovation-based outlier-resistant ambiguity resolution (AR) and Kalman filtering strategy are proposed specifically for the integrated system to resist the measurement outliers or poor-quality observations. A field vehicular experiment was conducted in Wuhan City to evaluate the performance of the proposed algorithm. Results indicate that it is feasible for the proposed algorithm to obtain high-accuracy positioning solutions in the presence of measurement outliers. Moreover, the tightly-coupled single-frequency multi-GNSS RTK/MEMS-IMU integration even outperforms the dual-frequency multi-GNSS RTK in terms of AR and positioning performance for short baselines in urban environments. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs10020205 |