The Eigenspace Spectral Regularization Method for Solving Discrete Ill-Posed Systems
This paper shows that discrete linear equations with Hilbert matrix operator, circulant matrix operator, conference matrix operator, banded matrix operator, TST matrix operator, and sparse matrix operator are ill-posed in the sense of Hadamard. Gauss least square method (GLSM), QR factorization meth...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics 2021-11, Vol.2021, p.1-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper shows that discrete linear equations with Hilbert matrix operator, circulant matrix operator, conference matrix operator, banded matrix operator, TST matrix operator, and sparse matrix operator are ill-posed in the sense of Hadamard. Gauss least square method (GLSM), QR factorization method (QRFM), Cholesky decomposition method (CDM), and singular value decomposition (SVDM) failed to regularize these ill-posed problems. This paper introduces the eigenspace spectral regularization method (ESRM), which solves ill-posed discrete equations with Hilbert matrix operator, circulant matrix operator, conference matrix operator, and banded and sparse matrix operator. Unlike GLSM, QRFM, CDM, and SVDM, the ESRM regularizes such a system. In addition, the ESRM has a unique property, the norm of the eigenspace spectral matrix operator κK=K−1K=1. Thus, the condition number of ESRM is bounded by unity, unlike the other regularization methods such as SVDM, GLSM, CDM, and QRFM. |
---|---|
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2021/4373290 |