Problem-Oriented Modelling for Biomedical Engineering Systems

Technical system (TS) models are widely used for setting and solving problems for the improvement of biomedical engineering systems beyond simple parameter optimisation. They mostly focus on system elements, the change or replacement of which can provide significant technical and economic benefits....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-08, Vol.12 (15), p.7466
Hauptverfasser: Kernytskyy, Ivan, Hlinenko, Larysa, Yakovenko, Yevheniia, Horbay, Orest, Koda, Eugeniusz, Rusakov, Konstantin, Yankiv, Volodymyr, Humenuyk, Ruslan, Polyansky, Pavlo, Berezovetskyi, Serhii, Kalenik, Marek, Szlachetka, Olga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Technical system (TS) models are widely used for setting and solving problems for the improvement of biomedical engineering systems beyond simple parameter optimisation. They mostly focus on system elements, the change or replacement of which can provide significant technical and economic benefits. The natures of TS models and their methods of construction vary, but they all share several common features: a functional approach, a focus on the conflicting demands put on the particular elements of a system or their interactions, and the construction of models that assume the significance of those conflicts. Thus, modelling aims to visualise conflicts in a way that facilitates the setting and solving of tasks that lead to their elimination. Such modelling can be termed problem-oriented. Results of the analysis of problem-oriented models proposed by different authors have shown that they model the structure of problem functions or the structure of the TS fragments responsible for such functions. A graphic representation of these models allows for the comparison and identification of opportunities for further development and aggregation. In this paper, the joint application of several known and proposed models is suggested for efficient forecasting of biomedical engineering systems and their modernisation.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12157466