Reconstruction of Subsurface Salinity Structure in the South China Sea Using Satellite Observations: A LightGBM-Based Deep Forest Method

Accurately estimating the ocean’s interior structures using sea surface data is of vital importance for understanding the complexities of dynamic ocean processes. In this study, we proposed an advanced machine-learning method, the Light Gradient Boosting Machine (LightGBM)-based Deep Forest (LGB-DF)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2022-07, Vol.14 (14), p.3494
Hauptverfasser: Dong, Lin, Qi, Jifeng, Yin, Baoshu, Zhi, Hai, Li, Delei, Yang, Shuguo, Wang, Wenwu, Cai, Hong, Xie, Bowen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurately estimating the ocean’s interior structures using sea surface data is of vital importance for understanding the complexities of dynamic ocean processes. In this study, we proposed an advanced machine-learning method, the Light Gradient Boosting Machine (LightGBM)-based Deep Forest (LGB-DF) method, to estimate the ocean subsurface salinity structure (OSSS) in the South China Sea (SCS) by using sea surface data from multiple satellite observations. We selected sea surface salinity (SSS), sea surface temperature (SST), sea surface height (SSH), sea surface wind (SSW, decomposed into eastward wind speed (USSW) and northward wind speed (VSSW) components), and the geographical information (including longitude and latitude) as input data to estimate OSSS in the SCS. Argo data were used to train and validate the LGB-DF model. The model performance was evaluated using root mean square error (RMSE), normalized root mean square error (NRMSE), and determination coefficient (R2). The results showed that the LGB-DF model had a good performance and outperformed the traditional LightGBM model in the estimation of OSSS. The proposed LGB-DF model using sea surface data by SSS/SST/SSH and SSS/SST/SSH/SSW performed less satisfactorily than when considering the contribution of the wind speed and geographical information, indicating that these are important parameters for accurately estimating OSSS. The performance of the LGB-DF model was found to vary with season and water depth. Better estimation accuracy was obtained in winter and autumn, which was due to weaker stratification. This method provided important technical support for estimating the OSSS from satellite-derived sea surface data, which offers a novel insight into oceanic observations.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14143494