Type synthesis of 3-DOF spherical hybrid mechanisms with fixed centers of rotation

To improve the load-bearing capacity and the rotation range about the normal of the moving platform in a spherical parallel mechanism (SPM), a type synthesis method for spherical hybrid mechanisms (SHMs) with fixed centers of rotation is proposed by coupling a serial transmission chain with the cent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mechanical engineering 2024-08, Vol.16 (8)
Hauptverfasser: Shi, Shuyang, Li, Kai, Ma, Zheng, Wang, Huiqiang, Qiu, Xuesong, Zhou, Yulin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve the load-bearing capacity and the rotation range about the normal of the moving platform in a spherical parallel mechanism (SPM), a type synthesis method for spherical hybrid mechanisms (SHMs) with fixed centers of rotation is proposed by coupling a serial transmission chain with the central passive limb chain of the SPM near its center area. Based on the analysis of the spherical mechanism configuration’s research status with a fixed rotation center, a method for systematically synthesizing SHMs is given, and four types of limb chains are developed. The possible limb constraint systems provided by each type of limb chain are analyzed via screw theory, and the type synthesis of each type of limb chain is carried out. Screening rules are proposed to obtain the preferred limb chains from the limb chain configuration results. By selecting and permuting preferred limb chains based on the mechanism’s center position of rotation and the constraint type, a series of SHMs that rotate unrestricted about the normal of the moving platform are produced. Selecting the RBR-2RRR SHM as an example, its workspace, singularity, dexterity, and stiffness are analyzed to verify the effectiveness of the research. This work enriches the configuration types of SHMs and provides theoretical support for the design and applications of SHMs in engineering.
ISSN:1687-8132
1687-8140
DOI:10.1177/16878132241258634