From Critical Point to Critical Point: The Two-States Model Describes Liquid Water Self-Diffusion from 623 to 126 K

Liquid’s behaviour, when close to critical points, is of extreme importance both for fundamental research and industrial applications. A detailed knowledge of the structural–dynamical correlations in their proximity is still today a target to reach. Liquid water anomalies are ascribed to the presenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2021-09, Vol.26 (19), p.5899
Hauptverfasser: Corsaro, Carmelo, Fazio, Enza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Liquid’s behaviour, when close to critical points, is of extreme importance both for fundamental research and industrial applications. A detailed knowledge of the structural–dynamical correlations in their proximity is still today a target to reach. Liquid water anomalies are ascribed to the presence of a second liquid–liquid critical point, which seems to be located in the very deep supercooled regime, even below 200 K and at pressure around 2 kbar. In this work, the thermal behaviour of the self-diffusion coefficient for liquid water is analyzed, in terms of a two-states model, for the first time in a very wide thermal region (126 K < T < 623 K), including those of the two critical points. Further, the corresponding configurational entropy and isobaric-specific heat have been evaluated within the same interval. The two liquid states correspond to high and low-density water local structures that play a primary role on water dynamical behavior over 500 K.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26195899