The Commissioning and Validation of EclipseTM Treatment Planning System on a Varian VitalBeamTM Medical Linear Accelerator for Photon and Electron Beams

Purpose: Commissioning of a linear accelerator is a process of acquiring a set of data used for patient treatment. This article presents the beam data measurement results from the commissioning of a VitalBeamTM linac. Materials and Methods: Dosimetric properties for 6,10, and 15 MV photon beams and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in biomedical technologies 2021-06, Vol.8 (2)
Hauptverfasser: Yazdani, Samira, Shirani Takabi, Fateme, Nickfarjam, Abolfazl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: Commissioning of a linear accelerator is a process of acquiring a set of data used for patient treatment. This article presents the beam data measurement results from the commissioning of a VitalBeamTM linac. Materials and Methods: Dosimetric properties for 6,10, and 15 MV photon beams and 6, 9, 12, and 16 MeV electron beams have been performed. Parameters, including Percentage Depth Dose (PDD), depth dose profile, symmetry, flatness, quality index, output factors, and the vital data for Treatment Planning System (TPS) commissioning were measured. The imported data were checked by CIRS phantom accordingly to IAEA TRS-430, TECDOC. Eight different positions of CIRS phantom CT were planned and treated. Finally, the calculated dose at a determined position was compared with measuring data to TPS validation. Results: After comparing 84 points in a different plan, the 83 points were in agreement with the criteria, and just for one point in 15 MV failed. Conclusion: Commissioning of dose and field flatness and symmetry are in tolerance intervals given by Varian. This proves that the studied lines meet the specification and can be used in clinical practice with all available electron and photon energies.
ISSN:2345-5837
2345-5837
DOI:10.18502/fbt.v8i2.6514