SMART amplification combined with cDNA size fractionation in order to obtain large full-length clones
cDNA libraries are widely used to identify genes and splice variants, and as a physical resource for full-length clones. Conventionally-generated cDNA libraries contain a high percentage of 5'-truncated clones. Current library construction methods that enrich for full-length mRNA are laborious,...
Gespeichert in:
Veröffentlicht in: | BMC genomics 2004-06, Vol.5 (1), p.36-36, Article 36 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | cDNA libraries are widely used to identify genes and splice variants, and as a physical resource for full-length clones. Conventionally-generated cDNA libraries contain a high percentage of 5'-truncated clones. Current library construction methods that enrich for full-length mRNA are laborious, and involve several enzymatic steps performed on mRNA, which renders them sensitive to RNA degradation. The SMART technique for full-length enrichment is robust but results in limited cDNA insert size of the library.
We describe a method to construct SMART full-length enriched cDNA libraries with large insert sizes. Sub-libraries were generated from size-fractionated cDNA with an average insert size of up to seven kb. The percentage of full-length clones was calculated for different size ranges from BLAST results of over 12,000 5'ESTs.
The presented technique is suitable to generate full-length enriched cDNA libraries with large average insert sizes in a straightforward and robust way. The representation of full-coding clones is high also for large cDNAs (70%, 4-10 kb), when high-quality starting mRNA is used. |
---|---|
ISSN: | 1471-2164 1471-2164 |
DOI: | 10.1186/1471-2164-5-36 |