Partial Block Scheme and Adaptive Update Model for Kernelized Correlation Filters-Based Object Tracking
In visual object tracking, the dynamic environment is a challenging issue. Partial occlusion and scale variation are typical challenging problems. We present a correlation-based object tracking based on the discriminative model. To attenuate the influence by partial occlusion, partial sub-blocks are...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2018-08, Vol.8 (8), p.1349 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In visual object tracking, the dynamic environment is a challenging issue. Partial occlusion and scale variation are typical challenging problems. We present a correlation-based object tracking based on the discriminative model. To attenuate the influence by partial occlusion, partial sub-blocks are constructed from the original block, and each of them operates independently. The scale space is employed to deal with scale variation using a feature pyramid. We also present an adaptive update model with a weighting function to calculate the frame-adaptive learning rate. Theoretical analysis and experimental results demonstrate that the proposed method can robustly track drastic deformed objects. The sparse update reduces the computational cost for real-time tracking. Although the partial block scheme generation increases the computational cost, we present a novel sparse update approach to reduce the computational cost drastically for real-time tracking. The experiments were performed on a variety of sequences, and the proposed method exhibited better performance compared with the state-of-the-art trackers. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app8081349 |