A Study of Chaos in Dynamical Systems
The behavior of systems such as periodicity, fixed points, and most importantly chaos has evolved as an integral part of mathematics, especially in dynamical system. This research presents a study on chaos as a property of nonlinear science. Systems with at least two of the following properties are...
Gespeichert in:
Veröffentlicht in: | Journal of Mathematics 2018-01, Vol.2018 (2018), p.1-5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The behavior of systems such as periodicity, fixed points, and most importantly chaos has evolved as an integral part of mathematics, especially in dynamical system. This research presents a study on chaos as a property of nonlinear science. Systems with at least two of the following properties are considered to be chaotic in a certain sense: bifurcation and period doubling, period three, transitivity and dense orbit, sensitive dependence to initial conditions, and expansivity. These are termed as the routes to chaos. |
---|---|
ISSN: | 2314-4629 2314-4785 |
DOI: | 10.1155/2018/1808953 |