An effective electricity worker identification approach based on Yolov3-Arcface

To address the issues of low efficiency and high complexity of detection models for electric power workers in distribution rooms, the electric power worker identification approach is proposed. The ArcFace loss function is used as the coordinate regression loss of the target box. According to the sco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-02, Vol.10 (4), p.e26184-e26184, Article e26184
Hauptverfasser: Liu, Qinming, Hao, Fangzhou, Zhou, Qilin, Dai, Xiaofeng, Chen, Zetao, Wang, Zengyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To address the issues of low efficiency and high complexity of detection models for electric power workers in distribution rooms, the electric power worker identification approach is proposed. The ArcFace loss function is used as the coordinate regression loss of the target box. According to the score, the template box with the highest score is selected for prediction, which speeds up the rate of convergence. Dimensional clustering is used to set template boxes for bounding box prediction. The experimental results show that the improved YOLOv3 is a high-performance and lightweight model. The electric power worker identification approach proposed in this paper has a high-speed recognition process, accurate recognition results. The effectiveness of the approach is verified with better detection performance and robustness.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e26184