Acoustic Coupling between Resonator Tubes in Quartz-Enhanced Photoacoustic Spectrophones Employing a Large Prong Spacing Tuning Fork
A theoretical model describing the acoustic coupling between two resonator tubes in spectrophones exploiting custom-made quartz tuning forks (QTFs) is proposed. The model is based on an open-end correction to predict the optimal tube length. A calculation of the sound field distribution from one tub...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2019-09, Vol.19 (19), p.4109 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A theoretical model describing the acoustic coupling between two resonator tubes in spectrophones exploiting custom-made quartz tuning forks (QTFs) is proposed. The model is based on an open-end correction to predict the optimal tube length. A calculation of the sound field distribution from one tube exit allowed for the estimation of the optimal radius as a function of the QTF prong spacing and the sound wavelength. The theoretical predictions have been confirmed using experimental studies employing a custom QTF with a fundamental flexural mode resonance frequency of 15.8 kHz and a quality factor of 15,000 at atmospheric pressure. The spacing between the two prongs was 1.5 mm. Spectrophones mounting this QTF were implemented for the quartz-enhanced photoacoustic detection of water vapor in air in the mid-infrared spectral range. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s19194109 |