Site-controlled telecom-wavelength single-photon emitters in atomically-thin MoTe2
Quantum emitters (QEs) in two-dimensional transition metal dichalcogenides (2D TMDCs) have advanced to the forefront of quantum communication and transduction research. To date, QEs capable of operating in O-C telecommunication bands have not been demonstrated in TMDCs. Here we report site-controlle...
Gespeichert in:
Veröffentlicht in: | Nature communications 2021-11, Vol.12 (1), p.6753-6753, Article 6753 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum emitters (QEs) in two-dimensional transition metal dichalcogenides (2D TMDCs) have advanced to the forefront of quantum communication and transduction research. To date, QEs capable of operating in O-C telecommunication bands have not been demonstrated in TMDCs. Here we report site-controlled creation of telecom QEs emitting over the 1080 to 1550 nm telecommunication wavelength range via coupling of 2D molybdenum ditelluride (MoTe
2
) to strain inducing nano-pillar arrays. Hanbury Brown and Twiss experiments conducted at 10 K reveal clear photon antibunching with 90% single-photon purity. The photon antibunching can be observed up to liquid nitrogen temperature (77 K). Polarization analysis further reveals that while some QEs display cross-linearly polarized doublets with ~1 meV splitting resulting from the strain induced anisotropic exchange interaction, valley degeneracy is preserved in other QEs. Valley Zeeman splitting as well as restoring of valley symmetry in cross-polarized doublets are observed under 8 T magnetic field.
Single-photon emitters in 2D semiconductors hold promise for quantum applications, but usually operate in the 500-800 nm wavelength range. Here, the authors report site-controlled creation of quantum emitters in the telecommunication wavelength window by coupling 2D MoTe2 to strain inducing nano-pillar arrays. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-021-27033-w |