Stiff and tough PDMS-MMT layered nanocomposites visualized by AIE luminogens

Polydimethylsiloxane (PDMS) is a widely used soft material that exhibits excellent stability and transparency. But the difficulty of fine-tuning its Young’s modulus and its low toughness significantly hinder its application in fields such as tissue engineering and flexible devices. Inspired by nacre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-07, Vol.12 (1), p.4539-4539, Article 4539
Hauptverfasser: Peng, Jingsong, Tomsia, Antoni P., Jiang, Lei, Tang, Ben Zhong, Cheng, Qunfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polydimethylsiloxane (PDMS) is a widely used soft material that exhibits excellent stability and transparency. But the difficulty of fine-tuning its Young’s modulus and its low toughness significantly hinder its application in fields such as tissue engineering and flexible devices. Inspired by nacre, here we report on the development of PDMS-montmorillonite layered (PDMS-MMT-L) nanocomposites via the ice-templating technique, resulting in 23 and 12 times improvement in Young’s modulus and toughness as compared with pure PDMS. Confocal fluorescence microscopy assisted by aggregation-induced emission (AIE) luminogens reveals three-dimensional reconstruction and in situ crack tracing of the nacre-inspired PDMS-MMT-L nanocomposite. The PDMS-MMT-L nanocomposite is toughened with mechanisms such as crack deflection and bridging. The AIE-assisted visualization of the crack propagation for nacre-inspired layered nanocomposites provides an advanced and universal characterization technique for organic-inorganic nanocomposites. Fine tuning of mechanical properties in elastomers is important for application of elastomers in flexible devices and biomedical field. Here, the authors prepare a nacre inspired PDMS-montmorrillonite composite with good mechanical properties and demonstrate crack tracing using aggregation-induced emission luminogens.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24835-w