Wavelet-Based Topographic Effect Compensation in Accurate Mountain Glacier Velocity Extraction: A Case Study of the Muztagh Ata Region, Eastern Pamir
Glaciers in high mountain regions play an important role in global climate research. Glacier motion, which is the main characteristic of glacier activity, has attracted much interest and has been widely studied, because an accurate ice motion field is crucial for both glacier activity analysis and i...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2017-07, Vol.9 (7), p.697 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glaciers in high mountain regions play an important role in global climate research. Glacier motion, which is the main characteristic of glacier activity, has attracted much interest and has been widely studied, because an accurate ice motion field is crucial for both glacier activity analysis and ice avalanche prediction. Unfortunately, the serious topographic effects associated with the complex terrain in high mountain regions can result in errors in ice movement estimation. Thus, according to the different characteristics of the results of pixel tracking in the wavelet domain after random sample consensus (RANSAC)-based global deformation removal, a wavelet-based topographic effect compensation operation is presented in this paper. The proposed method is then used for ice motion estimation in the Muztagh Ata region, without the use of synthetic-aperture radar (SAR) imaging geometry parameters. The results show that the proposed method can effectively improve the accuracy of glacier motion estimation by reducing the mean and standard deviation values from 0.32 m and 0.4 m to 0.16 m and 0.23 m, respectively, in non-glacial regions, after precisely compensating the topographic effect with Advanced Land Observing Satellite–Phased Array-type L-band Synthetic Aperture Radar (ALOS–PALSAR) imagery. Therefore, the presented wavelet-based topographic effect compensation method is also effective without requiring the SAR imaging geometry parameters and has the potential to be widely used in the accurate estimation of mountain glacier velocity. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs9070697 |