Vibration control of cantilever blade based on trailing-edge flap by restricted control input

Vibration and control of cantilever blade with bending-twist coupling (BTC) based on trailing-edge flap (TEF) by restricted control input are investigated. The blade is a thin-walled structure using circumferentially asymmetric stiffness (CAS) configuration, with TEF embedded and hinged into the hos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement and control (London) 2021-03, Vol.54 (3-4), p.231-242
Hauptverfasser: Liu, Ting-Rui, Gong, Ai-Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vibration and control of cantilever blade with bending-twist coupling (BTC) based on trailing-edge flap (TEF) by restricted control input are investigated. The blade is a thin-walled structure using circumferentially asymmetric stiffness (CAS) configuration, with TEF embedded and hinged into the host composite structure along the entire blade span. The TEF structure is driven by quasi-steady aerodynamic forces. Vibration control is investigated based on linear matrix inequation (LMI) algorithm using restricted control input (LMI/RCI). Flutter suppression of BTC displacements and the angle of TEF (i.e. the practical control input) are illustrated, with apparently controlled effects demonstrated. The restricted control input signals are used to driven the TEF to explore the scope of the feasibility of the practical TEF angle, which is displayed by a virtual simulation platform. The platform verifies the feasibility of the hardware implementation for the control algorithms.
ISSN:0020-2940
2051-8730
DOI:10.1177/0020294020983377