Graphene Oxide Enhanced Monoethanolamine and Ethylenediamine Nanofluids for Efficient Carbon Dioxide Uptake from Flue Gas

The addition of nanoparticles in amine solutions to produce a stable amine-based nanofluid provides a high surface area for absorption and improves the absorption rate. In this work, nanofluids were prepared by dispersing graphene oxide (GO) in monoethanolamine (MEA) and ethylenediamine (EDA) soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2024-06, Vol.9 (24), p.25625-25637
Hauptverfasser: Khumalo, Nomcebo P., Mahlangu, Oranso T., Mamba, Bhekie B., Motsa, Machawe M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The addition of nanoparticles in amine solutions to produce a stable amine-based nanofluid provides a high surface area for absorption and improves the absorption rate. In this work, nanofluids were prepared by dispersing graphene oxide (GO) in monoethanolamine (MEA) and ethylenediamine (EDA) solutions for adsorption of carbon dioxide (CO2) to further improve their absorption performance by providing more reaction sites on the GO framework. GO was synthesized using the modified Hummers method and characterized for physicochemical properties using SEM, EDS, FTIR, Raman analysis, and TGA. The FTIR spectra for the GO nanoparticles before absorption showed peaks attributed to C–C, H–C, and C–O bonding. After the absorption experiments, the FTIR spectra of GO showed peaks due to C–O–NH2, N–O–N, and N–H bonding. The BET analysis further confirmed the decrease in the surface area, pore volume, and pore diameter of the GO recovered from the nanofluids after the CO2 experiment, indicating an interaction between GO and amine molecules. The absorption process of CO2 by the nanofluid was performed in a custom-made pressure chamber whereby the CO2 gas was in direct contact with the absorption fluids. The obtained adsorption rate constant (k) for the reaction between CO2 and 30% MEA and EDA solutions was 0.113 and 0.131, respectively. Upon addition of 0.2 mg/mL GO in the base solution, k increased to 0.16854 and 0.17603 for the MEA and EDA nanofluids, respectively. The proposed mechanism involves GO nanoparticles interacting with the amine groups through the oxygen-rich groups of GO. This results in the formation of a zwitterion that readily reacts with CO2, resulting in a carbamate.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c06425