Eutrophication and HAB Occurrence Control in Lakes of Different Origins: A Multi-Source Remote Sensing Detection Strategy

Remote sensing techniques have become pivotal in monitoring algal blooms and population dynamics in freshwater bodies, particularly to assess the ecological risks associated with eutrophication. This study focuses on remote sensing methods for the analysis of 4 Italian lakes with diverse geological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2024-05, Vol.16 (10), p.1792
Hauptverfasser: Laneve, Giovanni, Téllez, Alejandro, Kallikkattil Kuruvila, Ashish, Bruno, Milena, Messineo, Valentina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Remote sensing techniques have become pivotal in monitoring algal blooms and population dynamics in freshwater bodies, particularly to assess the ecological risks associated with eutrophication. This study focuses on remote sensing methods for the analysis of 4 Italian lakes with diverse geological origins, leveraging water quality samples and data from the Sentinel-2 and Landsat 5.7–8 platforms. Chl-a, a well-correlated indicator of phytoplankton biomass abundance and eutrophication, was estimated using ordinary least squares linear regression to calibrate surface reflectance with chl-a concentrations. Temporal gaps between sample and image acquisition were considered, and atmospheric correction dedicated to water surfaces was implemented using ACOLITE and those specific to each satellite platform. The developed models achieved determination coefficients higher than 0.69 with mean square errors close to 3 mg/m3 for water bodies with low turbidity. Furthermore, the time series described by the models portray the seasonal variations in the lakes water bodies.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16101792