Droplet digital PCR-based analyses for robust, rapid, and sensitive molecular diagnostics of gliomas

Classification of gliomas involves the combination of histological features with molecular biomarkers to establish an integrated histomolecular diagnosis. Here, we report on the application and validation of a set of molecular assays for glioma diagnostics based on digital PCR technology using the Q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta neuropathologica communications 2022-03, Vol.10 (1), p.42-42, Article 42
Hauptverfasser: Wolter, Marietta, Felsberg, Jörg, Malzkorn, Bastian, Kaulich, Kerstin, Reifenberger, Guido
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Classification of gliomas involves the combination of histological features with molecular biomarkers to establish an integrated histomolecular diagnosis. Here, we report on the application and validation of a set of molecular assays for glioma diagnostics based on digital PCR technology using the QX200™ Droplet Digital™ PCR (ddPCR) system. The investigated ddPCR-based assays enable the detection of diagnostically relevant glioma-associated mutations in the IDH1, IDH2, H3-3A, BRAF, and PRKCA genes, as well as in the TERT promoter. In addition, ddPCR-based assays assessing diagnostically relevant copy number alterations were studied, including 1p/19q codeletion, gain of chromosome 7 and loss of chromosome 10 (+ 7/-10), EGFR amplification, duplication of the BRAF locus, and CDKN2A homozygous deletion. Results obtained by ddPCR were validated by other methods, including immunohistochemistry, Sanger sequencing, pyrosequencing, microsatellite analyses for loss of heterozygosity, as well as real-time PCR- or microarray-based copy number assays. Particular strengths of the ddPCR approach are (1) its high analytical sensitivity allowing for reliable detection of mutations even with low mutant allele frequencies, (2) its quantitative determination of mutant allele frequencies and copy number changes, and (3) its rapid generation of results within a single day. Thus, in line with other recent studies our findings support ddPCR analysis as a valuable approach for molecular glioma diagnostics in a fast, quantitative and highly sensitive manner.
ISSN:2051-5960
2051-5960
DOI:10.1186/s40478-022-01335-6