A Discrete Constrained Optimization Using Genetic Algorithms for A Bookstore Layout
In retail industry, one of the most important decisions of shelf space management is the shelf location decision for products and product categories to be displayed in-store. The shelf location that products are displayed has a significant impact on product sales. At the same time, displaying comple...
Gespeichert in:
Veröffentlicht in: | International journal of computational intelligence systems 2013-04, Vol.6 (2), p.261-278 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In retail industry, one of the most important decisions of shelf space management is the shelf location decision for products and product categories to be displayed in-store. The shelf location that products are displayed has a significant impact on product sales. At the same time, displaying complementary products close to each other increases the possibility of cross-selling of products. In this study, firstly, for a bookstore retailer, a mathematical model is developed based on association rule mining for store layout problem which includes the determination of the position of products and product categories which are displayed in-store shelves. Then, because of the NP-hard nature of the developed model, an original heuristic approach is developed based on genetic algorithms for solving large-scale real-life problems. In order to compare the performance of the genetic algorithm based heuristic with other methods, another heuristic approach based on tabu search and a simple heuristic that is commonly used by retailers are proposed. Finally, the effectiveness and applicability of the developed approaches are illustrated with numerical examples and a case study with data taken from a bookstore. |
---|---|
ISSN: | 1875-6891 1875-6883 1875-6883 |
DOI: | 10.1080/18756891.2013.768447 |