On some (integrable) structures in low-dimensional holography

Recent progress in holographic correspondence uncovered remarkable relations between key characteristics of the theories on both sides of duality and certain integrable models. In this note we revisit the problem of the role of certain invariants in low-dimensional holography. As motivating example...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear physics. B 2020-02, Vol.951, p.114889, Article 114889
1. Verfasser: Rashkov, R.C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent progress in holographic correspondence uncovered remarkable relations between key characteristics of the theories on both sides of duality and certain integrable models. In this note we revisit the problem of the role of certain invariants in low-dimensional holography. As motivating example we consider first the entanglement entropy in 2d CFT and projective invariants. Next we consider higher projective invariants and suggest generalization to higher spin theories. Quadratic in invariants deformations is considered and conjectured to play role in low-dimensional higher spin holography.
ISSN:0550-3213
1873-1562
DOI:10.1016/j.nuclphysb.2019.114889