On the interpretability of the SVM model for predicting infant mortality in Bangladesh

Although machine learning (ML) models are well-liked for their outperformance in prediction, greatly avoided due to the lack of intuition and explanation of their predictions. Interpretable ML is, therefore, an emerging research field that combines the performance and interpretability of ML models t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of health, population and nutrition population and nutrition, 2024-10, Vol.43 (1), p.170-16, Article 170
Hauptverfasser: Sayeed, Md Abu, Rahman, Azizur, Rahman, Atikur, Rois, Rumana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although machine learning (ML) models are well-liked for their outperformance in prediction, greatly avoided due to the lack of intuition and explanation of their predictions. Interpretable ML is, therefore, an emerging research field that combines the performance and interpretability of ML models to create comprehensive solutions for complex decision-making analysis. Conversely, infant mortality is a global public health concern affecting health, social well-being, socio-economic development, and healthcare services. The study employs advanced interpretable ML techniques to anticipate and understand the factors affecting infant mortality in Bangladesh, overcoming the shortcomings of the conventional logistic regression (LR) model. By utilizing the global surrogate model and local individual conditional expectation (ICE) interpretability technique, the interpretable support vector machine (SVM) has been used in this study to reveal significant characteristics of infant mortality using data from the Bangladesh Demographic and Health Survey (BDHS) 2017-18. To investigate intricate decision-making analysis of infant mortality, we adapted SVM and LR techniques with the hyperparameter tuning parameters. These models' performances were initially assessed using the receiver operating characteristics (ROC) curve, run-time, and confusion matrix parameters with 100 permutations. Afterward, the SVM model's model-agnostic explanation and the LR model's interpretation were compared to enhance advanced comprehension for further insights. The results of the 100 permutations demonstrated that the LR model (Average: accuracy = 0.9105, precision = NaN, sensitivity = 0, specificity = 1, F1-score = 0, area under the ROC curve (AUC) = 0.6780, run-time = 0.0832) outperformed the SVM model (Average: accuracy = 0.8470, precision = 0.1062, sensitivity = 0.0949, specificity = 0.9209, F1-score = 0.1000, AUC = 0.5632, run-time = 0.0254) in predicting infant mortality, but the LR model had a slower run-time and it was unable to predict any positive cases. The interpretation of LR analysis revealed that infant mortality rates decrease when mothers give birth after over two years, with higher educational attainment, overweight or obese mothers, working mothers, and families with polluted cooking fuel having lower rates. The local ICE interpretability technique, which depicts individual influences on the average likelihood of dying within the first birthday, explores the interpretable SV
ISSN:2072-1315
1606-0997
2072-1315
DOI:10.1186/s41043-024-00646-9