Biocarbonation: A novel method for synthesizing nano-zinc/zirconium carbonates and oxides
It is well known that the chemical precipitation is regarded as an effective approach for the preparation of nano-materials. Nevertheless, it represented several drawbacks, including high energy demand, high cost, and high toxicity. This work investigated the eco-sustainable application of plant-der...
Gespeichert in:
Veröffentlicht in: | Arabian journal of chemistry 2020-11, Vol.13 (11), p.8092-8099 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well known that the chemical precipitation is regarded as an effective approach for the preparation of nano-materials. Nevertheless, it represented several drawbacks, including high energy demand, high cost, and high toxicity. This work investigated the eco-sustainable application of plant-derived urease enzyme (PDUE)-urea mixture for synthesizing Zn–/Zr–carbonates and –oxides nanoparticles. Hydrozincite nanosheets and spherical-shaped Zr-carbonate nano-particles were produced after adding PDUE-urea mixture to the dissolved Zn and Zr salts, respectively. PDUE not only acts as a motivator for urea hydrolysis, but it is also used as a dispersing agent for the precipitated nano-carbonates. The exposure of these carbonates to 500 °C for 2 h has resulted in the production of the relevant oxides. The retention time (after mixing urea with urease enzyme) is the dominant parameter which positively affects the yield% of the nano-materials, as confirmed by statistical analyses. Compared with traditional chemical-precipitation, the proposed method exhibited higher efficiency in the formation of nano-materials with smaller particle size and higher homogeneity. |
---|---|
ISSN: | 1878-5352 1878-5379 |
DOI: | 10.1016/j.arabjc.2020.09.040 |