Green tea extract protects endothelial progenitor cells from oxidative insult through reduction of intracellular reactive oxygen species activity

Many studies have reported that tea consumption decreases cardiovascular risk, but the mechanisms remain unclear. Green tea is known to have potent antioxidant and free radical scavenging activities. This study aimed to investigate whether green tea extract (GTE) can protect endothelial progenitors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of basic medical sciences 2014-09, Vol.17 (9), p.702-709
Hauptverfasser: Widowati, Wahyu, Widyanto, Rahma Micho, Husin, Winsa, Ratnawati, Hana, Laksmitawati, Dian Ratih, Setiawan, Bambang, Nugrahenny, Dian, Bachtiar, Indra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many studies have reported that tea consumption decreases cardiovascular risk, but the mechanisms remain unclear. Green tea is known to have potent antioxidant and free radical scavenging activities. This study aimed to investigate whether green tea extract (GTE) can protect endothelial progenitors cells (EPCs) against oxidative stress through antioxidant mechanisms. Mononuclear cells (MNCs) were isolated from peripheral blood by density gradient centrifugation with Ficoll. The cells were then plated on fibronectin-coated culture dishes. After 7 days of culture, EPCs were characterized as adherent cells double positive for DiI-ac-LDL uptake and lectin binding. EPCs were further identified by assessing the expression of CD34/45, CD133, and KDR. EPCs were then treated with hydrogen peroxide (H2O2) at doses of 50, 100, 200 µM and incubated with or without GTE (25 µg/ml). The intracellular reactive oxygen species (ROS) levels were detected by flow cytometry using a 2',7'-dichlorofluorescein diacetate (DCF-DA) fluorescent probe. GTE ameliorated the cell viability of EPCs induced by H2O2 at doses of 50, 100, 200 µM for about 25.47, 22.52, and 11.96% higher than controls, respectively. GTE also decreased the intracellular ROS levels of EPCs induced by H2O2 at doses of 50, 100, 200 µM for about 84.24, 92.27, and 93.72% compared to controls, respectively. GTE improves cell viability by reducing the intracellular ROS accumulation in H2O2-induced EPCs.
ISSN:2008-3866
2008-3874